A central neural pathway controlling odor tracking in Drosophila.
نویسندگان
چکیده
Chemotaxis is important for the survival of most animals. How the brain translates sensory input into motor output beyond higher olfactory processing centers is largely unknown. We describe a group of excitatory neurons, termed Odd neurons, which are important for Drosophila larval chemotaxis. Odd neurons receive synaptic input from projection neurons in the calyx of the mushroom body and project axons to the central brain. Functional imaging shows that some of the Odd neurons respond to odor. Larvae in which Odd neurons are silenced are less efficient at odor tracking than controls and sample the odor space more frequently. Larvae in which the excitability of Odd neurons is increased are better at odor intensity discrimination and odor tracking. Thus, the Odd neurons represent a distinct pathway that regulates the sensitivity of the olfactory system to odor concentrations, demonstrating that efficient chemotaxis depends on processing of odor strength downstream of higher olfactory centers.
منابع مشابه
Olfactory Neuromodulation of Motion Vision Circuitry in Drosophila
It is well established that perception is largely multisensory; often served by modalities such as touch, vision, and hearing that detect stimuli emanating from a common point in space; and processed by brain tissue maps that are spatially aligned. However, the neural interactions among modalities that share no spatial stimulus domain yet are essential for robust perception within noisy environ...
متن کاملGenetic Manipulation of the Odor-Evoked Distributed Neural Activity in the Drosophila Mushroom Body
Odor-induced neural activity was recorded by Ca2+ imaging in the cell body region of the Drosophila mushroom body (MB), which is the second relay of the olfactory central nervous system. The signals recorded are mainly from the cell layers on the brain surface because of the limited penetration of Ca2+-sensitive dyes. The densely packed cell bodies and their accessibility allow visualization of...
متن کاملFluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns
The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-res...
متن کاملOdor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila.
In an attempt to correlate behavioral and neuronal changes, we examined the structural and functional effects of odor exposure in Drosophila. Young adult flies were exposed to a high concentration of the selected odor, usually benzaldehyde or isoamyl acetate, for 4 d and subsequently tested for their olfactory response to a variety of odorants and concentrations. The behavioral response showed ...
متن کاملA central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster.
We have studied the function of the major central olfactory pathway in fruit flies. Key elements of this pathway, the projection neurons (PNs), connect the antennal lobes with the lateral protocerebrum both directly and indirectly, the latter via the mushroom bodies (MBs). Transgenic expression of tetanus toxin in the majority of PNs and few MB neurons leads to defects in odor detection and mal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 5 شماره
صفحات -
تاریخ انتشار 2015